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Abstract—The Surface Water and Ocean Topography (SWOT)
satellite and AirSWOT airborne instrument are the first imag-
ing radar-altimeters designed with near-nadir and low incidence,
35.75 GHz Ka-band InSAR for mapping terrestrial water storage
variability. Remotely sensed surface water extents are crucial for
assessing such variability but are confounded by emergent and in-
undated vegetation along shorelines. However, because SWOT-like
measurements are novel, there remains some uncertainty in the
ability to detect certain land and water classes. This study examines
the likelihood of misclassification between 15 land cover types and
develops the Ka-band Phenomenology Scattering (KaPS) model to
simulate changes to Ka-band backscatter as a result of changing
surface water fraction and surface structure, including vegetation
morphology and water surface waves. Using a separability metric,
the study finds that water is five times more distinct compared with
dry land classes, but has the potential to be confused with littoral
zone and wet soil cover types. The KaPS scattering model simulates
AirSWOT backscatter for incidence angles 1–27°, identifying the
conditions under which open water is likely to be confused with
littoral zone and wet soil cover types. KaPS characterization of the
sensitivity of near-nadir and low incidence Ka-band SAR to small
changes in both wet area fraction and surface structure enables
a more nuanced classification of inundation area. These results
provide additional confidence in the ability of SWOT to classify
water inundation extent and open the door for novel hydrological
and ecological applications of future Ka-band SAR missions.
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I. INTRODUCTION

THE inundation extent and water surface elevation of inland
lakes, rivers, and wetlands are critical remote sensing

measurements for monitoring the terrestrial hydrological cycle
[1], [2], [3], [4], [5], [6], [7], [8]. Remote sensing of inundation
extent is complicated by riparian vegetation along shorelines and
aquatic vegetation in shallow or flooded areas, especially with
optical sensors [9], [10], [11]. Both optical and microwave meth-
ods underestimate inundation extent where vegetation density
outweighs observable water fraction [10] or when classification
methods prioritize open water classification accuracy over total
extent [11]. The study of aquatic vegetation remains an active
area of research for both active and passive remote sensing
examinations.

While long-wavelength, high-incidence angle radars (espe-
cially L band) are traditionally favored for hydrological appli-
cations due to their superior vegetation penetration–and in some
cases, ground penetration [13], [14], [15], [16]–low-incidence
angle short-wavelength radar systems can also measure wa-
ter extent and water surface elevation effectively [17], [18].
Because Ka-band SAR can be highly sensitive to both liquid
surface water and vegetation, it is useful for terrestrial hydrology
and ecological studies. Ka-band radars are sensitive to fine-
scale scattering features (i.e., on the order of their wavelength,
∼8.4 mm), for example, having better capabilities of detecting
small standing and capillary waves on open water surfaces or the
presence of non-woody emergent and/or floating aquatic plants.
The short Ka-band wavelengths therefore have the potential to
reveal different physical properties of wet and/or vegetated sur-
faces than conventional longer-wavelength C-, L-, and P-band
radars. Nonetheless, to what extent such technologies can dis-
criminate between diverse surface covers and differing moisture
contents remains an area of investigation [19], [20], [21].

The Surface Water Ocean Topography (SWOT) satellite
mission,1 developed by NASA and CNES with contributions
from CSA and UKSA, launched on December 16, 2022, uses

1[Online]. Available: https://swot.jpl.nasa.gov/
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Ka-band interferometry to produce the first swath altimetric
measurements of surface water from space [12], [22], [23].
For land surface hydrology, the goal of the SWOT mission
is to enable global, submonthly (11 to 21-day) mapping of
freshwater storage and river discharge for lakes as small as
(250 m)2 and rivers as narrow as 100 m [24]. To achieve
this, open water surfaces must be consistently identifiable in
SWOT Ka-band imagery. Based on theoretical modeling and
observations, accurate open water identification is anticipated
due to strong backscatter returns from open water surfaces at
near-nadir incidence angles (0.6°–4.1°) [18], [19], [25], [26],
[27]. However, preliminary observations of near-nadir and low
incidence (0°–30°) Ka-band backscatter from AirSWOT, an air-
borne swath altimeter, suggest significant real-world complexity,
including relatively low backscatter returns from portions of
some open water surfaces, and higher returns from some classes
of land surfaces [28]. Early AirSWOT assessments also report
strong radar returns, similar to expected open water returns,
from wetland vegetation and moist bare soils [28], [29], [30].
Such reports have raised concern within the SWOT science
community about possible misclassifications of surface water
[29], [31], and have prompted a desire for improved under-
standing and modeling of Ka-band backscatter returns over
inland water bodies and diverse land covers. A March 24, 2023
press release from CNES demonstrated one of the first SWOT
backscatter images over Toulouse, France, highlighting bright
scattering over land features and good differentiation of water
bodies.2

Software for analyzing radar backscatter (e.g., Pol-
SARProSim, SNAP) are often developed for longer wavelengths
(>5 cm), but to the authors’ knowledge, no publicly available
software can readily be used to simulate Ka-band scattering
for hydrology applications, including surface water and various
land covers. Several approaches have been developed to model
microwave scattering, including theoretical approaches such as
the Kirchhoff Approximation (KA), Geometric Optics (GO),
and Physical Optics (PO) models [32], [33], [34], [35] are
rigorous but computationally intensive for complex terrain. This
is especially true when the terrain has diverse surface cover,
including bare soil, vegetation, and water, with a wide range of
incidence angles. Empirical and semi-empirical models often
require dual- or quad-polarized observations (HH, VV, VH,
and HV) and assume small surface roughness and structural
variations relative to the wavelength [36], [37].

Some of these theoretical and empirical methods have been
applied to Ka-band low-incidence applications [21] for a few
terrestrial targets [38] as well as liquid water [39], [40]. However,
many of these approaches have shortcomings when applying
to SWOT-like incidence angles, resolutions, and/or terrestrial
target classes (inland water as well as spatially nonhomogeneous
land types). Simulators for SWOT data, developed by NASA-
JPL and demonstrated in [41], use known static parameters such
as topography, land cover, and scaled, spatially homogenous

2[Online]. Available: [https://presse.cnes.fr/en/swot-water-tracking-
satellite-sends-back-first-stunning-views, accessed March 24, 2023].

wind speed to predict scattering variability based on 5 km
resolution Ka-band radar data from the Global Precipitation
Measurement (GPM) satellite.

In support of the SWOT simulator and to provide an additional
foundation for future Ka-band phenomenology research, this
article develops a simple empirical scattering model based on
the statistical relationships between remotely sensed datasets.
The study assumes that such a model should include surface
dielectric properties, which are captured using volumetric soil
moisture, and surface geometry, captured using foliage height
diversity (FHD) or waveform “complexity,” a metric describing
the vertical heterogeneity of a LiDAR surface target (including
vegetated and non-vegetated surfaces). Because the 8.4 mm
wavelength is much smaller than many of the observed sur-
face features, all features are considered to be “rough” in the
electromagnetic sense, and therefore the study examines larger
“structural” geometric features, referring to intermediate-scale
textural features such as leaves and branches (represented by
the FHD complexity product). We do not apply any model
to convert moisture to dielectric values physically, nor do we
produce a physical model of electromagnetic scale roughness.
The dielectric component of radar backscatter modeling often
focuses on moisture and ignores temperature (with some excep-
tions related to the dielectric change due to the phase change of
snow, ice, or permafrost [42], [43], [44], [45], [46]). Because the
AirSWOT data does not have observations of frozen conditions,
temperature, and phase change influences are not assessed in
this study.

Traditional SAR and InSAR systems for land surface obser-
vations are typically C, S, L, or P-band (0.05–1 m wavelengths),
which are less sensitive to fine-scale surface features such as
tree leaves and short, non-woody plants. In contrast, shorter
wavelengths from X, Ku, and Ka-band are more sensitive to
vegetative features. Since the primary objective of these systems
is to investigate land properties [47], [48], [49], [50], they
typically use higher incidence angles, averaging around 30°
(±5°) and up to 50° [51], that exhibit higher backscatter over
land than over open water surfaces. In contrast, AirSWOT and
SWOT use lower incidence angles, producing higher backscatter
returns over water than the surrounding land [18], [19], [52],
[53]. AirSWOT acquires data in two swaths: an inner swath
having a near-nadir incidence angle range similar to SWOT
(0.6–4.1°), and an outer swath covering part of the inner range
and extends to low incidence angles (�3°–27°) [18], [25]. Both
swaths use vertical polarization for transmit and receive (single
pol: VV). As the inner swath data has not been made publicly
available for research, the data in this study and those reported
in previous studies [54], [55], [56], [57], [58] are from the outer
swath, and thus the range of incidence angles is large enough
that the water backscattering varies significantly from one edge
of the swath to the other, within the observed range of incidence
angles. In this article, “near-nadir” refers to the incidence angle
range 0°–10°, while “low incidence” refers to the incidence
angle range 10°–30°, though each AirSWOT image includes
both ranges (�3°–27°).

In addition, it is critical to identify regions with mixed pixels
containing backscatter contributions from both land and water,

https://presse.cnes.fr/en/swot-water-tracking-satellite-sends-back-first-stunning-views, ignorespaces accessed ignorespaces March ignorespaces 24, ignorespaces 2023].
https://presse.cnes.fr/en/swot-water-tracking-satellite-sends-back-first-stunning-views, ignorespaces accessed ignorespaces March ignorespaces 24, ignorespaces 2023].
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as these may lead to classification errors and phase shifts result-
ing in elevation retrieval errors [52], [58]. Surface water extent
and resultant phase errors have implications for developing
and validating future Ka-band instruments and future applica-
tions and validation of AirSWOT and SWOT. To assess these
phenomenological sources of error, the study identifies backscat-
ter sensitivities to varying surface types and evaluates under
what conditions water surfaces may be confused with other land
types, which additionally has implications for mixed pixels at
more coarse spatial scales than observed with AirSWOT.

This study advances physical understanding and modeling
of Ka-band backscattering response across a diverse range
of surface moisture conditions and land cover types by ana-
lyzing an extensive archive of AirSWOT Ka-band SAR data
acquired across Alaska and western Canada for the NASA
Arctic-Boreal Vulnerability Experiment (ABoVE) [59]. First,
the study determines the separability of near-nadir and low-
incidence Ka-band SAR backscatter for wet surfaces and diverse
land covers to assess retrievals of water surface area. Next, an
empirical investigation is conducted, examining the influence
of volumetric surface moisture and foliage height diversity
(FHD: form/geometry/complexity) on Ka-band surface scatter-
ing. These relationships are then used to develop a model to
simulate near-nadir and low-incidence Ka-band surface scatter-
ing, called Ka-band Phenomenology Scattering (KaPS) model,
developed to also simulate spatial and temporal variations in
Ka-band backscatter caused by changing surface moisture and
structure. The study concludes with a broader discussion of the
study’s implications for hydrological Ka-band remote sensing
and backscatter modeling.

II. DATA AND METHODS

A. Data

The AirSWOT Ka-band SWOT Phenomenology Airborne
Radar (KaSPAR) is a multiantenna, Ka-band wide-swath al-
timeter that uses InSAR processing to produce 3.6 m horizontal
resolution maps of water and land surface elevations. AirSWOT
was developed as an airborne complement to SWOT to test and
design radar and InSAR algorithms and to understand surface
phenomenological interactions at Ka band [18], [25]. This study
uses AirSWOT’s outer swath data products, spanning near-nadir
to low incidence angles (∼3°–27°). The radar data products used
in the analysis include: 1) incidence angle; 2) noise subtracted
and 3) calibrated backscatter, 4) signal-to-noise ratio (SNR),
and 5) irregular grid geolocation (lat-lon-height-error LLHE)
datasets processed at the NASA Jet Propulsion Laboratory (JPL)
[59]. The published data are multilooked and geocoded to pro-
duce final map products having a nominal pixel spacing of 3.6 m,
with flight acquisition dates between July 8 and August 17, 2017.
Coverage of the AirSWOT ABoVE flights are shown in Fig. 1.
For technical descriptions of these data products and the Air-
SWOT instrument configuration see [25], [59]. The collection
spans a 23° latitude gradient and captures a 17 cm seasonal hy-
drologic drawdown [52]. These observations and findings enable
the study of temporal variability in the Ka-band backscatter due

to surface moisture dynamics. With the exception of the SNR
and LLHE radar products, these products are freely available
for download (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id
= 1646 [52], [59]).

For brevity, the term “backscatter” here refers to the “near-
nadir and low incidence Ka-band backscatter” from the Air-
SWOT platform; and the term “Ka-band” is used to refer to the
35.75 GHz frequency (∼8.4 mm wavelength) of AirSWOT and
SWOT. For detailed specifications of the AirSWOT and SWOT
instruments see [18], [19], [25], [26], [54], [55], [56], [58].

The 2014 Arctic Boreal Vulnerability Experiment ABoVE
Annual Dominant Land Cover (ADLC) [60] product is used as a
land cover reference. The 30 m ADLC is derived from Landsat-7
Thematic Mapper imagery and contains the annual dominant
plant functional type represented as fifteen land cover classes
(evergreen forest, deciduous forest, mixed forest, woodland,
low shrub, tall shrub, open shrub, herbaceous, tussock tundra,
sparsely vegetated, fen, bog, shallows/littoral, barren and water).
Previous high-frequency scattering analyses have been limited
to water surfaces and broad vegetation types [53], [61], [62],
[63]; using the ADLC enables a more detailed examination of
the influences of surface variations and land cover variability on
Ka-band backscatter. The extensive coverage area and moderate
resolution afforded by the Landsat-based classification make it
a very useful reference dataset to analyze Ka-band scattering
coefficients for a more diverse range of land cover types than
has been previously published.

The NOAA Soil Moisture Products System (SMOPS) blended
radiometer volumetric soil moisture percentage product [64] is
used to assess broad-scale variations in surface moisture across
the 23° of latitude and 17 cm hydrologic drawdown with a 25 km
spatial resolution and a daily temporal resolution.

Airborne full-waveform LiDAR data collected from the Land
Vegetation and Ice Sensor (LVIS) [65] are used to assess the
influence of surface geometry (FHD) on Ka-band scattering. The
LiDAR data are collected within days of the AirSWOT flights
and provide full-waveform analysis of surface characteristics.
These full-waveform pulses are capable of penetrating canopies,
providing detailed information on canopy and forest structure
in diverse environments with reflected power at continuous
elevation points along the height of the feature [66]. Unlike
conventional LiDAR systems which might maintain up to 10
discrete points within a footprint, LVIS’ full-waveform system
may keep as many as 1000 points, describing a continuous
distribution of infrared scattered energy along the vertical profile
for each point. Complexity is the specific LVIS product used for
this analysis [representing FHD and similar to the leaf area index
(LAI)], which is included in the LVIS L2 Geolocated Surface El-
evation Product dataset ([67] https://nsidc.org/data/ABLVIS2),
providing a single-value metric to describe vertical heterogene-
ity and density of features along the profile [68]. Complexity
is proportional to the integration of the normalized returned
LiDAR signal over segments of the vertical profiles. (For the full
explanation and equations, see the algorithm theoretical basis
document describing vertical profile metrics [68], particularly
Fig. 3 and equations 11–12). Low complexity values usually

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id
https://nsidc.org/data/ABLVIS2
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Fig. 1. (a) Study area of the 2017 ABoVE airborne data collection of AIrSWOT and LVIS data. AirSWOT data was collected between July 8, and August 17,
2017; Land Vegetation and Ice Sensor (LVIS) data was collected within days of the AirSWOT northbound Flights, from June 29 to July 18, 2017. Vegetation
structural scattering contributions to AirSWOT Ka-band backscatter data are assessed using full-waveform data collected from LVIS. (b) An example of a Ka-band
backscatter image containing tree stands among agricultural fields and lakes, near the North Saskatchewan River, in Saskatchewan, Canada. The tree stands are
brighter than the surrounding vegetation. Water is much brighter than other surfaces. C) A reference color-infrared image acquired from the CIR camera onboard
the AirSWOT platform. With the false-color mapping, the tree stands are visible in red, pink, and white tones.

indicate flat ground or water surfaces, while high complexity val-
ues usually indicate dense canopies. The nominal pulse footprint
spacing is 10 m, but the data has been gridded and resampled
in this examination to 20 m, to provide smoother coverage and
transitions over irregularly missing data.

B. Methods

1) Separability of Near-Nadir and Low Incidence ka-Band
SAR Backscatter for Wet Surfaces and Diverse Land Covers:
To calculate the extent to which open water, emergent aquatic
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Fig. 2. Schematic diagram showing the stages of designing the KaPS model (first four columns) and producing a simulation. Reference land cover (green),
moisture (blue), and complexity (red) data are preprocessed and compared with Ka-band radar backscatter to produce empirical scattering curves and look-up
tables of parameter-backscatter relationships and expected values. The derived empirical scattering curves and look-up tables form the foundation of the KaPS
Ka-band backscatter simulator.

vegetation, wet soils, and land vegetation are separable (i.e.,
distinguishable) in Ka-band backscatter imagery, the ADLC
reference land cover dataset is compared with AirSWOT im-
ages as follows. First, the AirSWOT images are reprojected to
the same coordinate reference system as the ADLC, and the
AirSWOT pixels are converted to vector points to extract the
land cover directly corresponding to each radar pixel using a
nearest neighbor extraction. Next, the separability metric [69],
[70]—a modification of the standard score, and defined as the
difference between the linear backscatter means (µ) and standard
deviations (σ) for each pair of land cover classes (class i and
class j)—is used to calculate separability of land cover classes
from each other in the AirSWOT data [Equation (1)]. Land cover
class pairs with separability values greater than 2 are considered
separable, or unlikely to be confused when classified. For each
pair of land cover classes i and j and each 3° incidence angle bin
k the separability metric S is calculated as

Si,j,k =
|μi,k − μj,k|
σi,k + σj,k

. (1)

Because this study focuses on identifying the occurrence of
non-water observations being misclassified as water, the separa-
bility metric can be modified to refer to individual observations
within the class to produce a percentage likelihood of misclas-
sification. Here, the group of observations from one class (j),
are compared with the means and standard deviations from the
reference class (i) [excluding the standard deviation from class

j, converted to 0 in (2)]

Si,j,k =
|μi,k −Obsj,k|

σi,k + 0
. (2)

As a result of this calculation, Si,j,k has the same number of
values as the input observations from the class (j), giving each
observation its own separability value. For each class (j) the
number of observations of the separability values greater than
the reference separability threshold, 2, out of the total number of
observations is assessed as the separability ratio. This equation
allows us to determine the misclassification likelihood of water
compared with other land types.

2) Influence of Surface Moisture on ka-Band Surface Scatter-
ing: To assess the influences of moisture on Ka-band backscat-
ter, the NOAA SMOPS volumetric soil moisture percentage
data are spatially downscaled to 1 km posting, to more closely
approximate the spatial and temporal extent of AirSWOT acqui-
sitions. The downscaling methods are summarized here and are
explained in more detail in the appendix.

Prior to downscaling, each pixel of the 25 km volumetric soil
moisture percentage data is five times the swath width of the
AirSWOT flight lines, allowing only broad-scale comparisons
of regional moisture variations. Over the vast AirSWOT study
domain during a time of seasonal hydrologic change in the
region [52], substantial changes in soil moisture are observed
even in coarse resolution SMOPS data. The surface moisture
data have a daily temporal resolution, sufficient for monitoring
changing surface moisture for this purpose. However, SMOPS
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omits inland water bodies, complicating the assessment of Air-
SWOT radar backscatter over open water. To mitigate this,
water bodies from the 30 m ADLC dataset are merged with
the 25 km SMOPS dataset to produce a 1 km, higher resolution
product. As the moisture products are limited to the range of
0%–60%, and volumetric moisture content refers to the ratio of
the volume of water to the unit volume of soil, adding water
features increases the range to 100% for open water. The soil
moisture downscaling produces products that visually show both
the original 25 km large pixel shapes and ADLC water bodies.
This final 1 km daily resolution downscaled product is called
“surface moisture” rather than “soil moisture” because open
water bodies are included. The spatial downscaling methodology
is explained in more detail in the Appendix Section A, and
Fig. 12.

3) Influence of Surface Structural Complexity on Ka-Band
Surface Scattering: Radar backscatter varies with surface di-
electric constant and geometry (assessed here in the form of
volumetric moisture and LiDAR complexity) [71], [72]. Be-
cause the incidence angles assessed in this study are less than
30°, scattering is dominated by reflections from appropriately
oriented facets on the surface [73]. In this case, leaves pro-
vide diverse orientations and the structure of the vegetated
canopy provides a mixture of facets and gaps as demonstrated
in Fig. 1. Because LVIS LiDAR is full-waveform, it is able
to capture signal returns of different strata within the veg-
etative canopy, providing information on vegetation density
diversity and, therefore, canopy structure. The LVIS LiDAR
complexity metric measures the vertical heterogeneity of sur-
face features and is related to the LAI [68]. These metrics are
also related to two-way transmissivity, as less LVIS LiDAR
energy is returned from dense, highly complex canopies than
from sparse canopies and bare ground with low complexity.
While the complexity metric does not directly provide any
information regarding the orientation of the surface facets, leaves
with horizontal rather than vertical orientations are more ex-
posed to LiDAR pulses, which may have greater contributions
to the assessment of counts per elevation bin. Thus, the rela-
tionship between LiDAR complexity and Ka-band scattering
is hypothesized to be indicative of the two-way transmissivity
of Ka-band, assuming a near-uniform distribution of leaf and
branch orientations.

4) KaPS Model: A Simple Empirical Statistical Model to
Simulate Near-Nadir and Low Incidence Ka-Band Surface Scat-
tering: To simulate how Ka-band scattering may vary over space
and time, the study develops a simple statistical scattering model
based on near-nadir surface moisture and LiDAR complexity
to estimate backscatter (see Fig. 2). To develop the model, the
relationships between scattering (y) and each of these parame-
ters (xi = moisture or structural complexity) are investigated
independently for binned backscatter values. It is important
to note that the incidence angle range for this examination is
limited to 4°–6° to reduce the incidence angle-driven scattering
variability. This investigation is conducted by subsetting the
data into 15 ADLC land cover types and correlating each of
the two parameters with backscatter. The two parameters are
examined separately to identify the strength of the relationship

for each parameter alone and to support inverse modeling; land
covers are examined separately because various land covers
are expected to have different scattering mechanisms due to
differences explained by moisture and complexity (geometry).
Following the investigation of the two scattering parameters,
nonlinear equations describing these relationships are used as
the framework for the model. Two formulas (for each xi =
moisture or structural complexity) are generated for each land
cover type, estimated first using a loess local regression to
reduce the influence of outliers prior to estimating the nonlinear
relationships.

For each land cover, observed backscatter values from pix-
els with incidence angles between 4° and 6° are binned into
∼0.5 dB groups to extract the mean and standard deviation for
each parameter, creating a look-up table of expected values for
each backscatter bin. Next, scatterplots and nonlinear equations
of these expected values are produced for each parameter and
each land cover. While backscatter may be estimated using
each of the equations separately, it is expected that the variable
importance of each parameter will not be the same for each land
cover type and therefore none of the two parameters should be
used alone to estimate backscatter. A single equation for each
land cover is produced with weighted contributions from each
parameter. Weights are assessed to maximize the coefficient of
determination (R2) when the weighted averaged estimates are
compared with the binned observations. The direct output of
the combined regression formulas is applicable to the reference
incidence angle range 4°–6°, but estimates of higher incidence
backscattering can be produced by using the 4°–6° reference
value (for pixels within and outside of this incidence range),
modulated by the quantile scattering curves for higher incidence
angles. Finally, 2-D density plots (backscatter versus parameter,
unbinned) are used to estimate the probability that the estimated
value will occur. A secondary map depicting backscatter con-
fidence may be produced alongside the backscatter map using
these probability plots. Together, the pair comprise the KaPS
model. A flow chart demonstrating this framework is shown in
Fig. 2.

III. RESULTS

1) Separability of Near-Nadir and Low-Incidence Ka-Band
SAR Backscatter for Wet Surfaces and Diverse Land Covers

Open water and dry vegetation are typically distinguishable
in the AirSWOT data. Backscatter values extracted from the
ADLC demonstrate variation in scattering for different land
cover types for incidence angles 2° to 27° (see Fig. 3). For
dry land classes, the average backscatter for incidence angles
less than 5° is often very low (∼0 dB), with a small standard
deviation across the 2° to 27° incidence range, compared to
wetter surfaces. The open water class shows consistently high
scattering at small incidence angles (∼15 dB at 3°), and sharply
decreasing backscatter with increasing incidence angles, as ex-
pected from the smooth surface. The shallow-littoral zone of
water bodies contains both water and emergent or floating veg-
etation, producing bright scattering as indicative of the smooth
scattering source of the underlying water surface and perhaps
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Fig. 3. Extracted Ka-band backscatter from 2017 AirSWOT 2017 flights acquired over the ABoVE domain. The red line shows the average backscatter, while
the black dotted lines present the 32nd and 68th percentiles around the average. The blue shading shows the 2-D density of the observations, excluding outliers.
The majority of land covers have low backscatter across all incidence angles, while wetter surfaces such as water and littoral zones have higher backscatter at lower
incidence angles. The barren class shows a higher standard deviation, particularly at the near range, demonstrating more variability.

some double-bounce scattering [74]—observed as bright rings
around some small lakes with reedy vegetation—between the
vegetation and the water surface (∼7 dB at 3°). The barren
land cover shows brighter backscatter than vegetated dry land
(∼3 dB at 3°). Bright scattering from barren land surfaces is
indicative of the variability in the land cover itself. While barren
surfaces are not generally considered to be specular, they may
be very flat, smooth, and planar; they may also be wet, having
similar scattering as the littoral zone vegetation or the open
water in some cases. It is also important to note that there is

significant within-water class variability, primarily due to wind-
driven surface waves [41], which can increase the backscattering
over water by up to 15 dB with increasing wind speeds [75].

For all observed dry-land cover classes, there are few bright
pixels at small incidence angles (<5°). The low occurrence of
bright scatterers for vegetated land cover classes demonstrates
that it is uncommon for these classes to be very bright in these
Ka-band observations, limiting their impact. These anomalously
high backscatter returns from the vegetated classes are likely
to be caused by differences in resolution and misclassification,
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Fig. 4 Left. The separability metric (1) is calculated for each land cover class combination for the 0°–3° of incidence bin to determine the separability between
each pair of land cover classes. Pairs of classes with values greater than 2 are considered separable. Fig. 13 (appendix) segments and highlights values greater than
2 in a binary image. Right. The modified separability metric (2) is applied to each land cover class in contrast to the open water class, along all incidence angles, to
identify how separability changes as a function of incidence angle. Open water is shown to not be separable from itself as expected, and many land cover classes
are shown to be consistently separable from water. For near-nadir SWOT-like incidence angles, and low incidence angles up to 15°, open water is considered to be
highly separable and distinct from other classes.

as a few bright scatterers classified as vegetation in the ADLC
were found to be small water bodies or built-up regions observed
from the AirSWOT optical camera data. In addition, pixels from
other surface classes, such as water or littoral zones, may be
included in the extraction of a similar short vegetation class due
to uncertainties in the land cover classification.

At incidence angles around 5°, water differs from all of the
vegetated land covers (see Fig. 3). However, the differences
between water, littoral zone, and barren soils are smaller, though
they are still distinguishable on average in Fig. 3.

By applying the separability metric [69], the study quantifies
to what extent the scattering is similar or separable for each land
cover class and incidence angle (see Fig. 3). The separability
metric takes into account the variations in the surface scattering
of the water, making it comparable to land, given different
amounts of water scattering.

The separability matrices shown in Fig. 4 demonstrate that
open water is highly separable from most land cover classes from
low SWOT-like incidence angles up to mid-range AirSWOT
incidence angles (∼3�12°). As separability values greater than
2 are considered highly separable or distinct classes [70], the
open water separability values of 5–15 compared with all other
classes demonstrate that water is highly distinct. Fig. 13 (ap-
pendix) demonstrates a thresholded metric, highlighting values
greater than 2. Excluding the littoral zone and barren classes,
the separability of other land classes is even higher (8–15),
demonstrating that open water has up to five times greater sepa-
rability compared with vegetated land cover classes and is twice
as separable as littoral and barren classes. Since the separability
metric measures the distances between classes through the mean

and standard deviation values, separability refers to only one
standard deviation of observations and therefore represents the
majority of cases but not all cases.

The majority of the time, open water, littoral zone, and barren
surface classes are separable from each other, which is the
ideal scenario for SWOT and for future applications of Ka-band
data. However, under certain conditions, the differences between
these three classes narrow, particularly when non-water classes
exhibit higher than expected backscatter, such as with urban re-
gions (i.e., CNES press release example over Toulouse, France),
which were outside the scope of this study due to lack of obser-
vations, or when vegetation becomes flooded, causing a bright
double-bounce phenomenon. These results are corroborated by
similar studies looking at more coarse-resolution GPM data [29],
[63]. These findings suggest that it is additionally important to
assess the influence of changing surface conditions, which may
cause changes in backscatter.

2) Influence of Surface Moisture on Ka-Band Surface
Scattering

To assess the relationship between backscatter and moisture,
the moisture products were spatially downscaled to 1 km for
comparison AirSWOT observations. The results of the down-
scaling for moisture are shown in Appendix Fig. 1. For informa-
tion on how moisture, temperature, and backscatter covary, see
previous work [28].

A strong correlation between surface moisture and backscatter
is shown in Fig. 5. Using 0.5 dB backscatter bins, the mean and
standard deviation moisture values are assessed for each bin
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Fig. 5. Mean (black dots) and half-standard-deviation (horizontal lines) surface moisture values assessed for each 0.5 dB bin for each specific land cover, limited
to 4°–6° of incidence. Littoral zone, barren soils, and water have the highest surface moisture of the 15 classes. For each land class, a best-fit regression (red curve)
yields an empirical backscatter-moisture relationship unique to each land cover.

and for each land cover. Bins are limited to incidence angles
4°–6° to limit the incidence angle-related change in backscatter.
Most land cover values have low moisture, as expected, with the
exception of the three classes of interest: littoral zone, barren
soils, and water. A polynomial regression curve (red curve) is
drawn through the mean values for each of the land cover classes,
producing backscatter-moisture relationships that are unique to
each land cover.

The variation between the moisture values of the land cover
classes presented in Fig. 5 can be explained as follows. The
shallow-water-littoral zone contains a mixture of vegetation and
water; however, the surface moisture data is limited by the spatial

resolution of the data and the artificial addition of moisture for
wet areas such as open water bodies, which was not possible
with the littoral zone. Thus, the mixture of water and vegetation
would provide an expected observed surface moisture value
ranging between 30% and 50%. The barren surface classification
sometimes consists of exposed soils of rivers and lake beds on the
edge of water bodies. Across the ABoVE domain, where the land
cover data was produced, there is also an abundance of exposed
rock and bedrock, particularly closer to the Canadian Shield
in the east. However, the areas that are examined here rarely
include these rocky surfaces, and therefore dry, barren surfaces
have fewer occurrences in this analysis compared to near-water
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Fig. 6. Scatterplot of the backscatter- moisture observations are shown for each land cover type, different from the binned plots above, for incidence angles
4°–6°. Blue contours show dense clusters of points, supported by probability density lines on the x- and y-axes, revealing probable scattering values. These figures
demonstrate the likelihood that a given backscatter value or moisture value would be observed, given the seasonal observation range of July–August 2017.

soils or exposed lakebeds, leading to a wetter moisture range
of 40%–65%. Finally, open water has a range of 80%–100%
moisture, explainable by the differences in spatial resolutions
between the ADLC, surface moisture, and radar data products.
The large standard deviations of moisture within each bin and
high slopes of the fit lines suggest that the accuracy of the
backscatter estimate from moisture alone is limited.

While the regression curves are designed to show the ex-
pected backscatter value given a specific surface moisture value
based on the trend, any specific combination of moisture and

backscatter may or may not be statistically likely to occur. For ex-
ample, it was previously noted here that some mixed water-land
pixels would have a lower moisture value and less backscatter.
It is thus ideal to understand the expected backscatter of mixed
pixels; however, across the observations, mixed water pixels are
not particularly likely. Fig. 6 shows the unbinned observations
as a 2-D density plot highlighting the backscatter-moisture pairs
that are particularly likely.

As previously mentioned, the open water class may become
mixed water along the edges of channels and lakes, lowering
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the scattering value, although this is not particularly likely for
areas that are classified as open water. However, the littoral
zone, which is a transition between open lake water and land,
represents a very large range of expected moisture values, which
also explains why the alignment of the mean values from this
class represented in Fig. 5 is vertical. The littoral zone cover
class shows that backscatter can be high even when the ground
is not particularly wet, supporting the idea of mixed pixels and an
imprecise moisture reference, and additionally raises the idea of
backscatter variability based on surface texture and geometry at
different vertical scales. Unlike dense forest types, the littoral
zone contains thin, non-woody vegetation varying vertically
up to three meters, which would allow Ka-band penetration
or transmission, producing backscatter from different heights.
Moisture variability cannot fully describe the variability of the
Ka-band backscatter, possibly due to these surface complexities
over varying vegetation types. To begin to answer these ques-
tions, the next section examines surface and vegetation structural
complexity through the lens of LiDAR observations coincident
with the Ka-band observations.

3) Influence of Surface Structural Complexity on Ka-Band
Surface Scattering

Full-waveform LiDAR data from the LVIS provide informa-
tion on surface and vegetation structure. Low complexity values
(close to 0) are usually flat ground or water surfaces, while higher
complexity values (close to 1) are usually dense canopies. In
practice, for this region, complexity values rarely exceed 0.6,
with the exception of infrequent measurement errors, easily
recognizable as a stripe through the center of the flight segment.
These errors appear to be more apparent over water bodies, and
so for the purposes of this analysis, all complexity values greater
than 0.6 are omitted.

Using the same method of comparison as with the moisture
data, backscatter values are binned into 0.5 dB groups (y-axis)
and the average (points) and half-standard deviation (lines) of the
LVIS complexity values are plotted on the x-axis. All land cover
classes have at least some observations of low complexity due to
land cover variability, misclassification, and diverse densities of
land covers. High complexity values are typically found in forest
and shrub classes. Forest and shrub vegetation classes show
higher backscatter in low complexity areas and relatively lower
backscatter when complexity increases. Because complexity
is a measure of vertical structure and density, the decreased
backscatter signal is indicative of the decreasing radar and Li-
DAR transmittance through thicker canopies, producing “L” and
“C”–shaped backscatter-complexity relationships. However, it
is important to note that the shapes are not uniform across the
different land cover types. This is important because it indicates
that the Ka-band backscatter is sensitive not just to surface
complexities, but also to foliage type, as the Evergreen Forest
and Deciduous Forest classes have very different scattering
curves, for example.

Though the data in Fig. 7 represents the scattering relationship
between LiDAR complexity and Ka-band backscatter using
backscatter bins, very low backscatter values in the case of water,

and very high backscatter values in the case of dry land, are
not particularly common. The purpose of Fig. 7 (and Fig. 5)
is to demonstrate the contributions of backscatter variability
if a given backscatter value is observed. Fig. 8 demonstrates
the probability that a land cover type will have a high or low
complexity value.

Likely backscatter values are estimated for dry land using
the frequency distributions and backscatter–complexity relation-
ships (see Figs. 7 and 8). Combining complexity-based estimates
with moisture-based estimates accounts for dominant factors in
scattering variability across the landscape. Building this sim-
ple model enables the production of backscatter simulations
sensitive to changes in moisture and surface complexities, as
described next.

4) KaPS Model: A Simple Empirical Statistical Model to
Simulate Near-Nadir and Low-Incidence Ka-Band Surface
Scattering

This study introduces a simple empirical statistical model for
near-nadir and low-incidence Ka-band surface scattering, called
the KaPS model, to demonstrate likely variations in surface
scattering due to diverse and changing moisture conditions and
land covers. The KaPS model weights and averages the two out-
put backscatter estimates from the complexity-backscatter and
moisture-backscatter equations, and modulates the backscatter
value given the simulated incidence angle. When both data
sources—moisture and complexity—are available, the data can
be input directly into the model. When data is unavailable, a
look-up table, supported by frequency distributions (see Figs. 6
and 8) can be used to estimate likely values based on land
cover type. KaPS initially produces a backscatter estimate for a
given pixel based on the moisture and complexity values. The
backscatter values from each equation are combined using an it-
erative weighting technique to maximize the R2 when compared
against the observed, randomly sampled, and binned AirSWOT
data. These values are only applicable for the reference incidence
range (4°–6°) and can be used as a reference for higher incidence
angles extending to 27° using quantile curves extracted from
the land cover-backscatter-incidence angle relationships. For the
4°–6° incidence angle range, Fig. 9 demonstrates the relationship
between the estimated backscatter values produced from KaPS,
and the original binned backscatter values from AirSWOT. Note
that the KaPS estimated backscatter values were generated from
the regression equations assessed at previous steps; the data used
to produce the regression equations includes 50% of the data,
randomly sampled. Because the data is binned and aggregated,
there is no significant difference when sampling 30% or 70% of
the data. The mean and median R2 from the KaPS and AirSWOT
comparison “best case” across the 15 surfaces are 0.74 and 0.72,
respectively; the mean and median RMSE are 3.5 dB and 3.9 dB;
the mean and median MAE are 2.7 dB and 3.22 dB, demonstrat-
ing that the majority of the backscatter variability is captured by
moisture and LiDAR complexity, while the remainder of the
variability is likely due to finer, wavelength-scale roughness
features (∼1 mm, a fraction of the 8 mm wavelength), and
topographic influences to the land cover, which are not examined
in this study.



996 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 7. Mean (dots) and half-standard-deviation (horizontal lines) LVIS LiDAR complexity values assessed for each 0.5 dB bin for each specific land cover,
limited to 4°–6° of incidence. Colored dots represent moisture where blue dots are very wet and red dots are very dry. Forest and shrub vegetation classes show
a decreasing trend of backscatter with increasing complexity, whereas other land cover classes, such as water are limited in their complexity variability. For each
land class, a best-fit regression (black curve) yields an empirical backscatter–complexity relationship for that class.

Three look-up tables are used to simulate backscatter.
1) Incidence Angle—Backscatter Quantile Curves (see

Fig. 3; see also Appendix Table I), and
2) Formulas with weights for the LiDAR complexity and

moisture components and the resultant “best case” R2

value (see Appendix Tables II–III), and
3) Expected values and probabilities for moisture, LiDAR

complexity, and backscatter as seen in Figs. 5–8 (see
Appendix Table IV).

To simulate the backscatter from a given surface, either
surface complexity, surface moisture, or both are required as
inputs alongside a map of incidence angles for the coverage
area. Given input reference data and an incidence angle map (as
in the example shown in Fig. 10), the workflow is as follows.
If both complexity and moisture datasets are available, the near
range (4°–6°) reference backscatter values may be computed
directly. If one or the other dataset is unavailable, the available
data value for each pixel can be used as a starting point in the



FAYNE et al.: CHARACTERIZING NEAR-NADIR AND LOW INCIDENCE KA-BAND SAR BACKSCATTER FROM WET SURFACES 997

Fig. 8. Scatterplot of the backscatter-LVIS LiDAR complexity observations are shown for each land cover type, different from the binned plots above, for
incidence angles 4°–6°. Blue contours show dense clusters of points, supported by probability density lines on the x- and y-axes, revealing probable scattering
values. These figures demonstrate the likelihood that a given backscatter value or complexity value would be observed, given the observations from July 2017.

Expected Values lookup table (Appendix Table IV), pointing
to the likely value for the other dataset. Given the observed
value from one dataset, and an estimated value selected from
the lookup table, the values can be manually input into their
corresponding equations. Finally, if neither value is known,
KaPS can be used to simulate the backscatter response from
generated surface complexity and moisture maps or manually
coded values.

KaPS demonstrates possible radar backscattering values for
wet and dry earth surfaces. KaPS simulations show good visual

agreement with water bodies, wet vegetation, and soils as com-
pared with AirSWOT observed Ka-band radar backscatter data
(see Figs. 9 and 10). KaPS additionally highlights the sensitiv-
ity of radar backscatter to surface moisture, as the increased
moisture jump from the low-resolution 25 km SMOPS tile,
from ∼30% to 60% moisture, results in a dramatic increase
in radar backscatter (see Fig. 10). Soil moisture is generally
accepted to be saturated at around 50%–60%, where backscatter
increases with increasing moisture until the surface is saturated.
KaPS model output in Figs. 10(f) and 11(b)demonstrates this
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Fig. 9. Binned backscatter observations from AirSWOT versus simulated or “expected” values from KaPS. Backscatter values are simulated for each land cover
independently based on AirSWOT-derived empirical relationships between moisture, surface complexity, and backscatter. These estimated values represent a “best
case scenario” for how closely the data can be estimated. As these values are based on broad-scaled binned observations across the whole region, they do not
correspond to expected spatial correlations or variability at the local scale, as these values will depend on the resolution and accuracy of the input data.

sensitivity as brighter backscatter cutting diagonally across the
center of the flight line, corresponding to higher moisture from
the reference data. Following the available data from the refer-
ence products, because the LVIS data have an irregular shape and
a narrower swath width (∼1.8 km) compared to the AirSWOT
data (∼3.2 km), the output KaPS simulation is limited to the
same swath width as the LVIS reference. A zoom-in of the
simulated output in comparison with the AirSWOT observations
is shown in Fig. 11.

Simulating moisture and complexity variability by increas-
ing or decreasing variables by 0%, 10%, or 20% provides a

framework for predicting how the scattering will change when
the surface changes—such as during deforestation (decrease in
complexity) or during a flood (increase in moisture). Though the
model, like most, is limited by the accuracy and resolution of the
input data, the simulated outputs show good spatial agreement
with the observed values, with low MAE (under 3 dB) for all 25
out of 25 simulations and RMSE (under 3 dB) for 16 out of 25
simulations, though the R2 values are quite low (under 0.3), as
expected, given the high-spatial resolution of the observations.
Drying simulations (decreasing moisture by 20 or 10%) had
lower RMSE and MAE values than the wetting simulations,
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Fig. 10. Reference data and KaPS model simulation output for a transect through the peace athabasca delta (PAD) region, located in Canada (approximately
58.369N, 111.347W) with (a) Landsat-derived land cover ADLC (Wang et al. 2019), (b) NOAA SMOPS surface moisture, modified with added surface water for
this study, (c) NASA LVIS LiDAR Complexity, (d) false color infrared image, collected simultaneously from the same aircraft as the AirSWOT Radar observations,
(e) AirSWOT Ka-band backscatter, and (f) KaPS model simulation developed in this study. Note that the simulated backscatter (f) shows a diagonal line of brighter
scattering in the center of the flight line as a result of increased moisture; the near-saturated moisture for that area is shown as a large green tile in the reference
NOAA SMOPS data. As the KaPS model relies on the input data extents, the output KaPS simulation takes on the same irregular swath shape of the LVIS LiDAR
complexity image and does not cover the full AirSWOT swath. If KaPS is applied to an area with a wider LiDAR extent (matching AirSWOT), the output would
have more similar coverage to the original AirSWOT data.

emphasizing the importance of spatial variability and accuracy
of the input moisture and complexity data. The complete table
of the comparisons between the observed and simulated data is
included in the appendix, Table V.

The KaPS model can be applied to any region having
reference land cover and moisture datasets. As its purpose is to
approximate near-nadir and low-incidence Ka-band backscatter,
either modeled or remotely sensed data products may be used
as inputs. In addition, moisture, surface structural complexity,
and land cover may be varied within the model itself or by
simply using different input data. The primary purpose is to
be able to map water and land surface backscatter dynamics
due to transient events (like moisture), with the expectation
that relatively stable spatial differences due to heterogeneous
surface complexity should be considered in order to assess
the transient state of the surface. As observations of Ka-band

backscatter are limited in temporal and spatial coverage, KaPS
provides a method for creating simulated images of unobserved
surfaces and estimating backscatter changes for those surfaces
by including dynamic parameters such as surface complexity
and moisture. Further, KaPS has the potential to be used for
inverse problems, where backscatter values can be used to
assess vegetation characteristics and surface moisture
variability, although more work is necessary to demonstrate and
prove the validity of the inverse case. Additional research is
necessary and ongoing to identify sufficient model output and
to calibrate and validate the KaPS model to be applied in the
inverse cases. As SWOT was launched in December 2022, data
is anticipated to become publicly available as early as October
2023, providing an opportunity to conduct these examinations
with many more diverse conditions. Preliminary images from
the CNES press release demonstrate that the KaPS model could
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Fig. 11. Zoom-in of the simulated backscatter image [from Fig. 10(e) and (f)], containing river, lake, and wetland features. The simulation demonstrates an
accurate presentation of these coarse-scale features, albeit limited by the input resolution of the reference moisture and complexity data. The AirSWOT observation
(a), has a 3.6 m spatial resolution, while the KaPS simulation (b) uses input data with resolutions ranging from 20 m to 25 km. The KaPS simulation (b) uses LVIS
LiDAR data, which has missing data, thus the simulated output correspondingly has missing data in the same location.

be highly useful for understanding the backscatter variability
over land features.

IV. DISCUSSION AND CONCLUSION

Near-nadir and low-incidence Ka-band scattering sensitiv-
ities are examined for diverse Arctic-Boreal land and water
surfaces by segmenting NASA ABoVE AirSWOT observations
by land cover and comparing observed backscatter values to
remotely sensed moisture and structural complexity. Following
this analysis, the study enabled the development of a statistical
scattering model, KaPS, to simulate Ka-band surface scattering
at near-nadir and low incidence angles for diverse land cover
and moisture conditions.

This research quantifies observed Ka-band backscatter from
wet soils considering both vegetation vertical complexity and
moisture content. Moisture, a dominant component of the dielec-
tric constant, is a well-known control on radar backscatter [71],
although this has not historically been studied as extensively for
higher frequencies, including Ka-band. In addition, the specular-
ity or smoothness of various features has been under-examined

for Ka-band backscatter from various terrestrial surface types,
further limiting the knowledge about the occurrence of brightly
scattering, non-water features. To gain insight into land surface
variations through the perspective of the Ka-band frequency,
airborne Ka-band observations are used to identify backscatter
sensitivities to variations in land cover, moisture, and structure.

Ka-band radar backscatter-incidence angle curves from Air-
SWOT outer-swath data (see Fig. 3) demonstrate clear sepa-
ration between water surfaces and dry vegetation. Using the
separability metric [69], [70], open water is highly separable
from all other land cover classes based on the minimum value
necessary to consider groups distinct (five times more separable
than land and two times more separable than littoral zone and
barren soils) (see Fig. 4). Using the modified separability metric,
observations of barren soil/sand bars and littoral zone vegetation
are found to be confused with open water about 5% of the time,
showing that it is sometimes possible for barren soils and littoral
zone vegetation to produce backscatter values similar to open
water.

The observed backscatter is strongly dependent on mois-
ture, evidenced by the high moisture variability across the
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spatial domain and the seasonal water level dynamics. Without
distinguishing between land cover types, the highest backscatter
values occur when moisture is greater than 50%. When the
moisture–backscatter relationship is examined for each land
cover, the positive relationship remains; although most land
covers are not coincident with high moisture, backscatter nev-
ertheless increases with increasing moisture. Investigating the
backscatter versus moisture relationship confirms that this trend
is still observable from some land cover class observations that
are not in close proximity to open water.

The data analysis shows that Ka-band backscatter is measur-
ably sensitive to different classes of vegetation (volume scat-
tering) evidenced by an examination of the LVIS LiDAR com-
plexity. The shapes of the backscatter-complexity relationship
are possibly due to differences between two-way transmissivity
for different vegetation types and foliage orientations, providing
more interesting lines of future inquiry.

Combining observed LiDAR surface complexity with surface
moisture and reference land cover datasets provides a framework
for a simple empirical scattering model, the KaPS, capable of
simulating Ka-band backscatter returns from water and land
surfaces, with implications for being used for inverse problems,
to estimate moisture and surface complexity (vegetation types)
from Ka-band backscatter. The majority of observed variations
in the AirSWOT backscatter data can be reproduced using the
KaPS model, as evidenced by the mean and median R2 values
of 0.74 and 0.72 in a “best case” or a “matching observations”
scenario (see Fig. 9). Fig. 8 also shows that the worse per-
forming land covers have mean absolute errors no greater than
∼3 dB, which is similar to the GO model used by Fatras et al..
[21] for soil-only land covers at incidence angles less than 7°.
This work additionally stands out as achieving this error range
while including very diverse surface types, from open water, to
exposed soils, and dense foliage.

The purpose of the KaPS model is to map how backscatter
changes as a result of changing surface conditions, meaning the
model is not expected to resemble the observations exactly, but
should reflect the input reference data, as seen in Fig. 10(f). The
model is highly sensitive to the input data, as desired, showing
a tonally rough surface matching the complexities of the input
data. As a result, spatial correlations with observations are low,
while maintaining low MAE and RMSE values, demonstrating
accurate approximations given relatively coarse resolution input
data. Differences between the MAE and RMSE values of the
model and the simulation performance versus observations can
be explained by the relative percentage of each land cover
type, as the reported mean and median model values weight
all land covers equally, whereas some land cover types might be
represented in different amounts over space.

Possible applications of this model include: 1) estimating
areas and conditions where SWOT might have brighter than
expected scattering–such as bright land in proximity to open
water, confusing the open water area estimate, 2) estimating
wetland area, 3) retrievals of skin-level canopy and soil mois-
ture (called surface moisture here), 4) retrievals of vegetation
structure, and 5) providing a first-guess of scattering conditions
and planning for new Ka-band instruments, particularly focused
on data acquisition over areas of uncertainty. Many of these

applications will require the use and development of higher
spatial and temporal resolution moisture and complexity data,
which is an area of ongoing research.

There are several limitations of this analysis, including:
1) Because the Ka-band AirSWOT data examined in this study
primarily observed Arctic-Boreal wetland regions, the distri-
bution of scattering coefficients, particularly those found in
Fig. 3, may be skewed to reflect wetter regions. To counter
this effect and to understand how the scattering values may
depart from those observed, this study describes how scattering
varies over similar yet drier surfaces, and develops a simple
model to simulate Ka-band radar backscatter to estimate the
appearance of wetter and drier areas. 2) The expected moisture
values underpinning the KaPS model are much coarser than
ideal for this study. While this issue was addressed by adding
in surface water features to give a larger range of moisture
variability and higher resolution wet-dry transitions, variations
across non-water surfaces remain limited to the scale of the
original 25 km SMOPS resolution, so the dynamic range of
moisture for non-land features is likely to be under-sampled as
a result.

This research reveals that, under moderately wet summertime
conditions, 1) the mean backscatter from open water, emergent
aquatic vegetation, wet soils, and land vegetation classes vary by
at least one standard deviation, making them all highly separable,
with likely confusion with water occurring about 5% of the time,
and 2) a simple model for near-nadir and low incidence Ka-band
scattering can be used to simulate changes to natural surface
complexity and dielectric constant (as complexity and surface
moisture) under non-frozen conditions.

This study confirms expected relationships between moisture
and backscatter, extends this examination to include structural
variability, and develops the KaPS model. The performance
of KaPS is similar to that of a previous GO modeling study
[21] while including more diverse surface covers and higher
incidence angles, up to 27°. This model produces the framework
for developing a methodology to enable geophysical inversions
using moisture and complexity (or vegetation type) from Ka-
band measurements. Future applications for KaPS include fur-
ther investigations of skin-surface moisture and complex surface
impacts on Ka-band backscatter returns for terrestrial ecology
and hydrology studies and increased confidence in AirSWOT
and SWOT surface classification accuracies and water surface
elevation retrievals.

APPENDIX

A. SMOPS Soil Moisture Downscaling

Daily NOAA SMOPS soil moisture data are spatially down-
scaled by adding reference water features from the Landsat-
derived ADLC product. The SMOPS data are nearest-neighbor-
resampled to 30 meters to match the ADLC, and the resampled
SMOPS pixels corresponding to the ADLC open water class
are re-assigned values of 100% moisture. Finally, the 30-m
resampled and waterbody-added moisture data is aggregated to
1 km to increase computation speed for analysis. An additional
90-m product was developed for finer-detailed analysis and
testing as the AirSWOT swath width is approximately 4 km. This
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process produces products that visually show both the original
25 km large pixel shapes and finer ADLC water bodies. Note:
Because the ADLC does not have a separate class for “snow”,
snow-capped mountain ranges are labeled “water” as seen in the
Alaska Range in the south and the Brooks Range in the north.
None of the AirSWOT lines in this analysis include snow cover.
An example of this output is shown in Fig. 12.

B. Incidence Angle Backscatter Curve Look-up Table

TABLE I
SUBSET OF AN EXAMPLE INCIDENCE ANGLE BACKSCATTER CURVE LOOK-UP

TABLE THAT IS USED TO ESTIMATE THE BACKSCATTER FOR THE OPEN WATER

LAND COVER CLASS

TABLE II
FORMULAS WITH WEIGHTS FOR THE COMPLEXITY AND MOISTURE

COMPONENTS

TABLE III
R2, MAE [DB], AND RMSE [DB] VALUES ARE PRESENTED FOR WEIGHTED

AND AVERAGED COMBINED EQUATIONS FOR STRUCTURAL COMPLEXITY AND

MOISTURE RELATIONSHIPS WITH BACKSCATTER

TABLE IV
EXAMPLE LOOK-UP TABLE IS SHOWN HERE, REPRESENTING THE OPEN WATER

CLASS WHERE MOISTURE VARIES ALONGSIDE EXPECTED VALUES FOR

BACKSCATTER
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TABLE V
RESULTS OF THE SPATIAL COMPARISON BETWEEN THE SIMULATED KA-BAND

BACKSCATTER DATA USING THE KAPS MODEL AND THE OBSERVED KA-BAND

BACKSCATTER DATA FROM AIRSWOT

Fig. 12. Water bodies are added to the NOAA SMOPS Soil Moisture product
for comparison with higher-resolution Ka-band backscatter data. On the left is
a map of the NOAA SMOPS 25 km soil moisture product covering parts of
Alaska and Canada; on the right is the 1 km downscaled data, including water
bodies produced in this study.

Fig. 13. Separability matrix from Fig. 4 is included here again on the left for
reference– on the right, the binary thresholding of the separability matrix for
values greater than 2 is shown, highlighted in green. These figures demonstrate
that water and the littoral zones are separable from all other land cover classes
and that some other land cover classes can be distinguished between themselves
(open shrubs and low shrubs are noticeably different from tall forest classes).
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